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Turbulent flow in wavy pipes 
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A primarily experimental investigation was undertaken to determine the internal 
structure of steady, quasi-uniform, non-separated, axisymmetric flows in circular 
pipes with sinusoidal wall profiles. The quantities measured include radial and 
longitudinal distributions of mean velocity, pressure, and total head; the 
Reynolds shear stress and all three components of turbulence velocity; and 
boundary shear stress and pressure. Two different wall-wave steepnesses were 
investigated, and a constant Reynolds number of 1.13 x lo5 (based on the average 
pipe diameter) was maintained in most experiments. The boundary shear stress 
was found to be shifted upstream relative to the boundary wave, whereas the 
wall pressure is shifted slightly downstream. The turbulence measurements 
revealed that there is a central core extending over some GO % of the pipe radius 
in which the turbulence quantities are constant along the pipe. Near the 
boundary, however, the turbulence velocities and stress vary periodically along 
the boundary waves. The longitudinal component of mean velocity was found to 
be distributed radially according to the power law, but with an exponent that 
varies along each wave; a simple analytical model is constructed to predict the 
variation of the exponent. It was not found possible to relate the local boundary 
shear stress to just the local flow characteristics, since the convective or ‘history’ 
effects play a significant role in its determination. An empirical formula is derived 
relating the local boundary shear stress to the local velocity distribution and the 
first two derivatives of the boundary profile. 

1. Introductory remarks 
Shear flows past wavy boundaries have attracted considerable research 

attention in recent years because of the central role they play in several intriguing 
phenomena: the generation of wind waves on water; the formation of sedimentary 
ripples and dunes in deserts and river channels; the stability of a liquid film in 
contact with a gas stream; and the rippling of melting surfaces. Wavy-boundary 
flows of gases in chemical or vibrational non-equilibrium have also been treated 
at some length (Vincenti 1959; Rhyming 1963). A concise review of this general 
class of problems has been given by Benjamin (1959). Experimental determina- 
tion of the internal structure of wavy-boundary flows is generally complicated 
by secondary effects. For example, free-surface flows over wavy beds are accom- 
panied by relatively strong secondary currents generated by the interaction 
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between streamline curvature in vertical planes and the velocity gradient out- 
ward from the plane side-walls of the flume, and at  higher Froude numbers by 
diagonal standing waves (Robillard & Kennedy 1967). Wavy-bed flows in 
rectangular cross-section ducts, as investigated by Motzfeld (1937), must also 
give rise to centrifugally induced secondary currents. Air flows over progressive 
water-waves are experimentally troublesome because of their unsteadiness. 

The purpose of the primarily experimental investigation reported herein was 
t o  obtain detailed data on both mean-flow properties and turbulence charac- 
teristics for the simplest realizable wavy-boundary shear flow: steady, quasi- 
uniform, non-separated, axisymmetric flow in a circular pipe, the diameter of 
which varies sinusoidally along its length. This flow is ideally two-dimensional, 
generates no secondary currents (except perhaps for Goertler vortices), and offers 
the additional advantage that there are already available for reference adequate 
data on the limiting case in which the wave steepness tends to zero. Measurements 
were obtained for two different test sections with the same wave amplitude and 
averaget diameter, but with wavelengths differing by a factor of two. The same 
Reynolds number, 1-13 x lo5 based on the average pipe diameter, was maintained 
throughout the investigation, except for some auxiliary experiments performed 
to ascertain the effect of Reynolds number on the boundary shear stress. The 
quantities measured and reported in the following sections include radial and 
longitudinal distributions of mean velocity, pressure, and total head; the 
Reynolds shear stress and all three components of turbulence velocities; and 
boundary shear stress and pressure. A simple analytical model is developed for 
predicting the variation along the pipe of the form of the mean-velocity profile, 
and an empirical relation is derived relating the local boundary shear velocity 
to the locaI flow characteristics and conduit geometry. 

2. Experimental apparatus 
The experimental set-up is depicted schematically in figure 1 (a). The air flow 

supplied by the centrifugal blower was discharged into a 4 ft diameter chamber 
which contained four layers of +inch mesh screen. The necessary steps were taken 
to isolate the blower and stilling chamber to prevent objectionable vibration of 
the approach pipe and test section. A Prandtl tube located at  the pipe centreline 
near the downstream end of the contraction section was used to ensure that the 
desired discharge was maintained in all tests. The 20ft long approach pipe pro- 
vided fully developed flow at the inlet to the test section. The honeycomb and 
screens at the upstream end of the approach pipe were required to obtain an 
axisymmetric velocity distribution at  the instrument-port section near the down- 
stream end of the approach pipe. The mean-velocity distributions measured in 
two perpendicular planes at this section were found to be congruent and sym- 
metric about the pipe axis, and to have the power-law form with an inverse 
exponent, n = 6.7, in the range one would expect for the Reynolds number of 
the flow. 

designates values measured over EL cross-section or a t  a point over a period of time. 
Herein, the term ‘average’ refers to values taken along the pipe, while ‘mean’ 
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Table 1 summarizes the geometrical characteristics of the two wavy test 
sections used. The section numbers referred to in subsequent discussion are 
identified in figure 1 ( b ) .  

To obtain an indication of the maximum value of a/L  which could be expected 
to be free from local separation, some ancillary experiments were made in an 
open-throat wind tunnel using a series of 4in. average diameter axisymmetric 

stilling chamber 
Contraction section 

FIGURE 1. (a) Schematic diagram of experimental set up, and (b )  definition 
sketch of instrumented wave. 

Measure- 
D a L ments 

Average Wave Wave- Total made on 
diameter amplitude length No. of length section at  

Model (ft) (ft) (ft) a/L waves (ft) waveno.? 

I 0-408 0.0184 0.833 1/45 10 8.33 8 
I1 0-408 0.0184 1-667 1/90 6 10.00 5 

t Waves numbered from upstream end. 

TABLE 1. Geometry of wavy test sections 

elongated bodies with rounded upstream ends and sinusoidal longitudinal wall 
profiles. Separation was detected by painting the bodies with a mixture of lamp- 
black and kerosene. Four wave steepnesses were tested: a/L = 1/20, 1/25, 1/35 
and 1/45. Separation appeared to be just incipient on the body with alL = 1/35, 
while the one with a/L = 1/45 gave no indication of separation; hence the latter 
value was selected for the first wavy pipe fabricated. The wavy pipes were con- 
structed by forming fibreglass on to machined wooden mandrels. Each wavy pipe 
was fitted with two longitudinal flanges, so the half-sections could be separated 

31-2 
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along a diametrical plane. A transparent window was provided along the wave 
in which the measurements were made, to permit observation of the measuring 
probes. Measurement ports were machined at intervals of &T along one wave- 
length into a resin instrument platform cast on to the wavy pipe. Probes were 
supported by a rack and pinion which was equipped with a vernier and which 
could be moved along the metal track attached to the instrument platform. It 
was verified that the probes did in fact traverse a diameter. Some additional 
measurement ports were installed later for detailed measurements of boundary 
shear-stress distribution, which were made to determine more precisely the phase 
shift between the shear stress and the wall profile. When a port was not being used 
it was closed with a plug, the face of which was hand finished to give a smooth 
surface to the inner pipe wall. Small diameter piezometer openings for measure- 
ment of wall pressure were provided at  intervals of Qm along two waves; to mini- 
mize interference, each hole was offset tangentially from the adjacent upstream 
one. The joints at  flanges, around windows, etc., were all carefully hand finished 
to produce a smooth, continuous surface. 

Turbulence velocities and stresses were measured using a linearized-output, 
two-channel Old Gold Hot-wire Anemometer and Mean-Product Computer, 
developed and constructed at the Iowa Institute of Hydraulic Research and 
described by Glover (1967). A single-wire probe with the wire mounted hori- 
zontally and oriented perpendicularly to the pipe axis was used to measure the 
longitudinal components of both the mean and turbulence velocities. The two 
specially designed cross-wire probes used to measure the tangential and radial 
components of velocity had the wires mounted in horizontal and vertical planes, 
respectively, and oriented at  k 45" to the pipe axis. Total-head and pressure-head 
distributions were measured separately with total- and pressure-head tubes so 
designed that the sensing ports were in the planes of the sections identified in 
figure 1 (b) .  The mean velocities measured with the total- and static-head tubes, 
the single-wire probe, and the two cross-wire probes were compared and found 
to be in excellent conformity, as were the longitudinal components of the turbu- 
lence velocities measured with the three different hot-wire probes. The radial 
distributions of total-head and pressure-head were found to be symmetric at all 
test stations, and hence measurements with the hot-wire probes were made only 
over the radius away from the wall in which the probes were mounted; the hot- 
wire probe supports were designed accordingly to permit measurements very 
close to the wall. 

The mean-velocity profile obtained with the hot wire at each measurement 
station was integrated (after weighting the measured velocities with the local 
radii) and the discharges so obtained (which were found to be in excellent agree- 
ment) were averaged and used in calculation of the average velocity, Reynolds 
number, etc. Wall shear stress was measured with a modified Preston tube 
(Zweilochsonde) of the type described by Rechenberg, Schwefel & Bienert (1967); 
the probe employed is sketched in figure 2. The hypodermic tubing from which the 
probe tubes were fabricated was sufficiently elastic that the end of the probe 
could easily be deflected to be tangent to the wall at  any station by merely 
depressing the probe stem with the rack-and-pinion mount. The probe was Cali- 
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brated in the instrument port located at the downstream end of the approach 
pipe, using measured pressure gradients along the pipe. All pressures and heads 
were measured with a null-displacement micro-manometer with a discrimination 
of 0.001 in. of alcohol. The outside diameter of the tubes was sufficiently small 
(1.0 mm) that errors of not more than a few per cent are suggested by Brown & 
Joubert’s (1969) error-criteria graph for Preston tubes (their figure 9), based on 
measured values of shear velocity, maximum wall-pressure gradient, etc., in the 

FIGURE 2. Detail of shear-stress probe. d = 1.0 mm. 

wavy pipes. The shear velocity-tube diameter Reynolds number varied along the 
pipe from about 30 to 60, which would indicate that the tubes were contained well 
within the law-of-the-wall region. Uncertainties about the extent of the law of 
the wall in strong pressure gradients preclude a more precise evaluation of the 
accuracy of the boundary shear-stress measurements. 

3. Presentation of results 
The same mean velocity, U = 46.7ftIsec (based on the average wavy-pipe 

diameter, 0.408 f t )  was used in most of the experiments. Some auxiliary experi- 
ments were made with U = 39.5ft/sec to obtain additional data on the boundary 
shear-stress distribution. In other supplementary tests, not reported herein, it 
was found that the normalized mean-velocity profiles were unaltered when the 
average velocity was increased by some 40 %. Comparisons of the various flow 
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properties a t  sections 1 and 9 (see figure 1 (b))  will frequently be made in con- 
junction with discussion of the quasi-uniformity of the flow. 

Distributions of total head and pressure 

Figure 3 portrays the distributions of total head, referenced to the wall at  
section 1 and normalized by U2/2g,  for models I and 11. As would be expected, 
the boundary convergence from section 1 to section 5 causes the total-head 
profiles to become flatter, while the divergence from section 5 to section 9 pro- 
duces progressively sharper profiles. Two noteworthy points should be mentioned 
here. First, in both models the centreline total head is hardly affected by the 
convergence and divergence; moreover, at  the centreline, the head loss due to 

H / (  UZ/W 
Flow 
0- 0.6 1.2 0.6 1.2. 0.6 1.2 0.6 1.2 0.6 1.2 0.6 1.2 0.6 1.2 0.6 1.2 0.6 1.2 

Section 

FIGURE 3. Total head profiles. 0, model I; A, model 11. 

energy dissipation is more or less uniformly distributed. Secondly, the total head 
profiles at  sections 1 and 9 are virtually identical, allowing for a small decrease 
due to dissipation, suggesting that quasi-uniform flow had been attained at the 
wave where measurements were made. 

Figure 4 presents for both pipes the distributions of pressure normalized by 
+pU2. The boundary pressures shown were measured through the wall piezo- 
meters. As in figure 3, the reference pressure has been taken to be p = 0 at the 
wall at  section 1. The effects of boundary curvature are clearly evident. A t  
sections where the wall is concave (sections 1, 2, 8, 9) the pressure decreases 
toward the pipe centreline, whereas at  sections of convex boundary (sections 
4, 5, 6) the converse holds. At the inflexion points (sections 3, 7) the pressure is 
nearly constant across the pipe. The effects are, of course, more pronounced in 
model I, which had shorter, steeper waves. Figure 5 shows the distributions of 
wall pressure, measured through the piezometer taps; the reference pressure has 
once again been taken to be p = 0 at section 1. The pressure wave is seen to be 
shifted a small distance downstream relative to the boundary undulations. The 
data presented include no correction for the small pressure drop resulting from 
dissipation (compare pressures at sections 1 and 9). Even if some estimate of this 
correction is applied, say by distributing the total pressure drop along the wave- 
length on the basis of uniform-flow friction factors for the local diameters and 
velocities, the pressure distributions are still found to be shifted slightly down- 
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stream. Such a phase shift has been observed experimentally by Motzfeld (1937) 
in wind-tunnel studies with a two-dimensional wavy bed, and predicted analytic- 
ally by Benjamin (1959) for the case of shear flow of semi-infinite extent past 
a wavy boundary. Larras & Claria (1960), on the other hand, observed that the 
wall pressure is symmetrically disposed with respect to a two-dimensional 
sinusoidal bed. Benjamin predicted for the simplified (sinusoidal) velocity distri- 

Flow 
w0 \DfN ? ? f N  \ o f "  f "  ? 20 0 ~ 0 0 0 0 0 0 0  0000 000 xzo  00  
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00 
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5 
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FIGURE 4. Pressure distributions. 0, model I; A, model 11. 
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FIGURE 5. Boundary pressure measured through wall piezometers. 

bution he considered a boundary pressure phase shift of &T; the phase shifts in 
the present case are seen to be somewhat less. 

Mean-velocity projiles 
The mean-velocity profiles for both models are shown in figure 6, and those for 
model I are presented in a logarithmic plot in figure 7. The convergence and 
divergence of the section have the anticipated effect on the general shape of the 
velocity proliles. Figure 7 demonstrates that the mean-velocity profiles at loca- 
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FIGURE 6. Mean velocity profiles. 0, model I; A,  model 11. 
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tions symmetrical about the section of minimum (or maximum) diameter are 
nearly identical, the point velocities displaying significant differences only in 
the immediate vicinity of the wall. Moreover, it is seen that over 90 % or more of 
the radius at  each section the mean velocity is distributed in accordance with the 
power-law, 

u/urn,, = ( I  - r/ro)l’n, 

where urn,, is the maximum (centreline) velocity at  the section and ro is the local 
radius. The mean-velocity data demonstrated a similar degree of conformity to 
the logarithmic law. Because of the strong non-uniformity of the flow, both n 
in the power law and Kkmhn’s K in the logarithmic distribution vary from 
section to section. Figure 8 shows the values of n determined from figure 7 and 
a similar plot for model 11. The analysis producing the predictions for n is 
presented in section 5. 

Boundary shear stress 
The boundary shear stresses measured with the modified Preston tube are pre- 
sented in figure 9, wherein the shear-stress distributions are seen to be shifted 
upstream relative to the boundary wave. The phase shifts are approximately 
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FIGURE 9. Boundary shear-stress distributions. ---, calculated for uniform flow using local 
diameter ; - - - - , calculated for uniform flow using average diameter. Model I: 0, 
Re = 1.13 x 106; +, Re = 0 . 9 0 ~  106. Model 11: a, Re = 1 . 1 3 ~  lo6; A, He = 0 . 9 0 ~  106. 

0.072L (26’) and 0.050L (ISo) for models 1 and 11, respectively. Benjamin (1959) 
predicted an upstream phase shift of Qn for the simplified velocity profiles used 
in his analysis of a semi-infinite stream moving past a wavy bed. The normalized 
shear stresses calculated using uniform-flow friction factors obtained from the 
Moody pipe-friction diagram for the average and local velocities and diameters 
are also shown in figure 9. It is seen that the alternate convergence and divergence 
produce significant increases in the magnitude of the shear-stress variations. It is 
also noteworthy that although the radial distributions of mean velocity are 
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virtually identical at corresponding converging and diverging sections, the shear 
stress is not symmetrically disposed about the boundary waves; this points up 
the role of convective effects in determining the local boundary shear stress. 

Note that the shear stresses at  sections 1 and 9 are equal for each model, giving 
further testimony to the quasi-uniformity of the flow. 

Turbulence intensities 

Figures 10 and 11 show the distributions of the r.m.s. of each of the three com- 
ponents of the turbulence velocities for both models, normalized by the calcu- 
lated shear velocity for a straight pipe with the average diameter of the wavy 

Flow 
0 1 2  1 2  

1 
Section 

Flow 

Section 
FIGURE 10. Root-mean-square values of components of turbulence velocities. 

(a) Model I. (71) Model 11. 0, (U'2)*/u7,; 0,  (da)*/uTm; A ,  (z)4/uTm. 
- 

pipes: uTm = 2.2 ft/sec. In  figure 11 (a)-(c) 110 attempt has been made to delineate 
the profiles for each section; instead, only some representative and limiting profiles 
are shown. Also included for reference in figure 11 (a)-(c) are the turbulence profiles 
measured by Laufer (1954) at  a Reynolds number of 5 x lo5 in a smooth uniform 
pipe. In a straight pipe all three components of the turbulence velocity are equal 
at the centreline, while in the present case the longitudinal component is larger 
by a factor of two to three than the other two components. The turbulence 
intensities in model I are greater by some 20-30 % than those in model 11; the 
increase would be expected from the generally larger shear stress and stronger 
non-uniformity in model I (see figure 9). The comparison in figure 11 (a)-(c) of the 
non-dimensionalized turbulence intensities with those obtained by Laufer (1954) 
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at corresponding values of the normalized radial co-ordinate reveals that the 
radial and tangential components are generally less than half as great as those of 
uniform flow in a pipe with the average wavy-pipe diameter, while the longi- 
tudinal component in model I is some 25 yo greater than in a straight pipe, and 
in model I1 is nearly the same as in a straight pipe. Hence the alternate con- 

v 
\ c, 

I "  

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

Pi+l%m 
9 

FIGURE 11. Comparative plots of root-mean-square of components of turbulence velocities. 
(a) Longitudinal, (b )  radial, (c) tangential. - , wavy pipe; -- , uniform pipe with 
average wavy-pipe diameter (Laufer 1954) ; -. -, uniform pipe with maximum wavy- 
pipe diameter (Laufer 1954). Section: 0, 1 ;  0, 2;  a, 3 ;  V, 4; x ,  5;  v, 6; A, 7 ;  ., 8; 
0 ,  9. 

vergence and divergence of the flow has the net effect of diminishing the radial 
and tangential components of the turbulence velocity, while the streamwise 
component may be slightly increased. Perhaps the most interesting aspect of the 
turbulence structure is portrayed in figure 11 (a)-(c), wherein it is seen that over 
a central core covering some 60 yo of the radius the turbulence intensities remain 
virtually constant along the pipe. Outside of the core, in the annular region 
adjacent to the boundary, the turbulence intensities are strongly influenced by 
the local boundary shear stress and boundary configuration. The curious irregu- 
larities in the turbulence distributions near the wall, as well as other features of 
the turbulence structure, will be discussed in 0 4. 

Reynolds stress 

In  axially symmetric flows, such as those under consideration, it seems 
reasonable to expect that the only Reynolds shear stress greatly different from 
zero is that acting on circumferential surfaces, - p m .  A few measurements of 
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confirmed that this quantity is in fact zero in the present flow configuration. 
Figure 12 shows the radial and longitudinal distributions of - p a ,  normalized 
by the average boundary shear stress, and figure 13 presents a comparison of the 
Reynolds stress profiles for all sections in each model. Also shown in figure 13 ase 

( - P.u")/(P.u;,) 

Secfion 
FIGURE 12. Reynolds shear stress distributions. 0, model I; A ,  model 11. 
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FIGURE 13. Comparative plots of Reynolds shear stress. -, wavy pipe; -- , uniform 
pipe with average wavy-pipe diameter (Laufer 1954) ; -. -, uniform pipe of maximum 
wavy-pipe diameter (Laufer 1954). Section: 0, 1; 0, 2;  A, 3; v,  4;  x ,  5 ;  v, 6; A, 7; ., 8; 0 9 9 .  

the computed shear stresses for uniform pipes with the average and the maximum 
wavy-pipe diameters. In  figure 12 it is seen that the Reynolds stress is generally 
greater in model I than in model 11, in correspondence with the larger boundary 
shear stress in model I. The core region, in which the turbulence intensities are 
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nearly constant, that was revealed in figure 11 (a)-(c) is also characterized by 
constant shear stress. In  model I the constant-core shear stress is intermediate 
to the values in uniform pipes with the maximum and average wavy-pipe 
diameters, while in model I1 it  is somewhat less in keeping with the generally 
lower turbulence levels in this pipe. The irregularities noted in the distributions 
of turbulencc velocities are also present in the Reynolds stress profiles. 

4. Discussion of results 
Momentum balance 

Further consideration of the data presented in figures 3-13 yields some insights 
that are helpful in gaining a better understanding of wavy boundary flow. First, 
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FIGURE 14. Dishributions of components of longitudinal momentum balance. A ,  momentum 
flux ; x , shear force (integrated from section 1)  ; , longitudinal pressure force on boundary 
(integrated from section 1);  0, pressure force on flow section; + , sum of forces and 
momentum flux. 

it is revealing to examine the magnitudes of the principal contributions to the 
streamwise momentum balance; these are presented for model I in figure 14, 
which shows the longitudinal momentum flux and pressure force a t  each section, 
the longitudinal components of shear force exerted on the fluid by the wall 
between section 1 and the downstream sections; and the sum of these four 
quantities. The measured values of mean velocity, pressure and shear stress were 
used in calculating the various quantities appearing in this figure. The variation 
along the pipe in the momentum contribution of the longitudinal component of 
turbulence was found to  be negligible. The sum of the streamwise momentum 
flux and forces is seen to be very nearly constant a t  every section; this tends to 
corroborate the accuracy of the measured data. Next, note that the contributions 
of the wall-pressure force and especially of the wall-shear force are very small 
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compared to the variation in the momentum flux and the pressure force exerted 
across the flow section on the fluid. This implies that variations in the momentum 
flux are balanced primarily by the pressure force exerted over the cross-section. 
This consideration also points out the practically insurmountable difficulty 
encountered in attempting to calculate the local boundary shear stress from 
a momentum analysis. To do so would require great precision in the estimates 
of the momentum flux and pressure profiles, and hence accurate estimates also 
for the velocity profiles-accuracy which cannot presently be attained without 
very extensive computational effort. 

As the flow section converges and diverges along the wavy pipe, the Bernoulli 
or Venturi effect gives rise to an alternately negative and positive streamwise 
pressure gradient. The centrifugally induced radial pressure gradients cause this 
longitudinal pressure gradient to vary radially, increasing in magnitude outward 
from the centreline. This is apparent in figure 4, wherein it is seen that the radial 
pressure gradients are such that with increasing r they increase the magnitude 
of the negative streamwise pressure gradient between sections 1 and 5 and 
strengthen the adverse pressure gradient between sections 5 and 9. This radial 
variation of the longitudinal pressure gradient has a marked effect on the mean- 
velocity profiles, enhancing as it does, with increasing r,  the longitudinal accelera- 
tion (between sections 1 and 5) and deceleration (between sections 5 and 9). Thus 
the boundary curvature reinforces the ordinary effects of boundary convergence 
and divergence on the radial distribution of velocity with the result, demon- 
strated in figure 6, that the velocity profiles become progressively blunter as the 
local diameter decreases in the flow direction and sharper in the reaches where 
the flow section is enlarging. Since the streamwise pressure gradient varies 
radially, as well as along the pipe, the radial distribution of longitudinal velocity 
must also change in the flow direction, and it is no longer possible to represent the 
velocity profiles with a one-parameter family of curves in which the parameter is 
related only to the boundary convergence or divergence (or the pressure gradient) 
as is the case for straight-walled non-uniform sections. The variations in the radial 
distribution of mean velocity affect in turn both the momentum flux and the 
total pressure force. The first of these effects is relatively small, as can be inferred 
from the calculations presented by Iwasa & Kennedy (1968), while the second is 
much more significant since the details of the velocity distribution near the 
boundary, where the streamline curvature is greatest, have a pronounced effect 
on the total pressure force. This latter effect is magnified in the case of a circular 
pipe by both the incremental area corresponding to each element of radius and 
the longitudinal pressure gradient increasing with r .  

Turbulence velocities 

The distributions of turbulence velocities and turbulence shear stress shown in 
figures 10 to 13 raise several questions. First, it is difficult to reconcile the exist- 
ence of the constant core, throughout which the turbulence does not vary in the 
streamwise direction, with the results of rapid distortion theory (Taylor 1935; 
Batchelor & Proudman 1954). For example, Batchelor & Proudman’s calcula- 
tion of the effect of a symmetrical contraction on turbulence intensities predicts 
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that in the present flows, (u'")& is diminished between sections 1 and 5 by 
approximately 25 yo, while the other two turbulence velocity components are 
increased by a comparable factor. To be sure, the restrictions imposed in 
Batchelor & Proudman's analysis (rapid distortion, homogeneous turbulence, 
viscous effects neglected) were not met in the present experiments, but one might 
have expected the experimental and theoretical results to be at least qualitatively 
similar. In  the vicinity of the wall, u' does attain its minimum values at  the ends 
of the contracting reaches (section 5 ) ,  and its maxima near the end of the expan- 
sions (sections 1 and 9), as is shown in figure 11 (a).  Close examination of 
figure 11 (c) reveals that near the boundary the maxima and minima of w' occur 
near stations 3 and 7, respectively, while for v' (figure 11 ( b ) )  there is no discernible 
consistent pattern outside the constant core. One might conjecture that the 
seemingly erratic behaviour of v' near the wall is the result of Goertler vortices, 
but if this were the case the distribution of w' should be equally irregular. 

The turbulence configuration of this flow is affected not only by distortion, but 
also by the production, transport and dissipation of turbulence energy. The 
streamwise variation in the boundary shear stress with its attendant effect on 
the turbulence production must be responsible in large part for the seemingly 
erratic radial distributions of turbulence intensity near the boundaries. Turbu- 
lence produced near the wall is generally transported radially inward, dissipating 
as it diffuses. However, in regions of very low-boundary shear stress and turbu- 
lence production there may be a net transport radially outward of turbulence 
generated and transported toward the pipe axis some distance upstream. At 
Iarger distances from the wall, in the core of constant turbulence velocities, the 
longitudinal variations in turbulence intensities produced by variations in 
turbulence production near the wall are attenuated and are apparently just 
offset by other effects such as distortion. However, the details of the mechanisms 
responsible for the constant core are by 110 means clear. An analysis of the effects 
of the wall waviness on the turbulence would probably require an extensive 
numerical treatment of the full turbulence transport equations, along the lines 
pursued by Harlow & Romero (1969) in their analysis of turbulence distortion 
in a non-uniform channel. Even then the problem would have to be somewhat 
simplified. In  any case, it appears that rapid distortion theory sheds little light 
on the turbulence behaviour of wavy-boundary flow. 

Boundary drag 

It is worthwhile to compare and evaluate the form drag (resulting from the 
boundary pressure being shifted relative to the boundary wave), shear drag, and 
head loss over one wavelength for straight and wavy pipes. This comparison is 
presented in table 2, wherein the various quantities for the wavy pipes were 
calculated from the experimental data and those for straight pipes were obtained 
by means of the K&rm&n-Prandtl friction-factor relation for smooth pipes. The 
form drag was calculated as the difference between the shear drag obtained from 
the boundary shear-stress measurements and the pressure-force difference 
between sections 1 and 9. The comparisons are made for straight pipes with the 
average and the maximum wavy-pipe diameters. Note that in the case of wavy- 
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pipe flow the two drag ratios do not sum to the head drop ratio, because the 
calculation of head loss involves integration of the product of pressure and 
velocity, both of which are functions of r ,  over the cross-section. The form drag 
is seen to be small compared to the shear resistance. It is interesting that in 
model I1 the head loss is less than for a straight pipe with the average wavy-pipe 
diameter. For this long-wave model the diminution in the head loss resulting 
from the local energy gradient varying approximately as the inverse fifth power 
of the local diameter (as would be the case if the friction factor were constant 
along the pipe) more than offsets the increase in energy dissipation engendered 
by the non-uniformity. 

Uniform pipe 0.446 0.408 
diameter r J. > r  A 7 

(ft) ( p f ) w / ( p T ) s  ( P 7 ) w / ( F 7 ) s  ( S ) w / ( h ) s  V f ) W / ( F T h  (FAO/(FT)S ( h f ) W / ( 5 ) 8  

Model I 0.23 1.41 1-70 0.18 1.09 1.09 
Model I1 0-20 1.24 1.46 0.16 0.96 0.93 

TABLE 2. Comparison of form drag (F,), shear drag (F7), and head drop (hf) for straight and 
wavy pipes. The subscripts 8 and w refer to the straight and wavy pipes, respectively. 

5. Analysis 
It was observed in section 3 that the radial distribution of longitudinal velocity 

is well represented by the power law, (l), over some 90 yo or more of the radius 
(see figure 7)) but that the reciprocal exponent, n, varies along the pipe (see 
figure 8). It is possible by means of some simple applications of continuity and 
energy principles to derive an expression for n, as follows. Assume that at  the 
pipe axis the dissipative stresses are sufficiently small that the total head is 
constant along the centreline (except, of course, for the gradient due to the 
energy dissipation of the throughflow); i.e. assume that the boundary waviness 
does not affect the total head at  the centreline. Figure 3 indicates that this is 
indeed the case. Then it follows that 

wherep(x, 0) is the centreline pressure, p is the fluid density, and C, is a constant 
for each flow. Integrating (l), weighted by 27rr, from r = 0 to r = r,,(x) the 
resulting expression for the discharge, Q,  is 

Equations (2) and (3) contain three unknowns: n, urnax, andp(x, 0). To obtain a 
third independent relation some results of a potential flow analysis will be 
utilized. 

32 F L M  47 
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The velocity potential q5 describing incompressible potential flow with average 
velocity U in a circular pipe of average radius R whose longitudinal wall profile 
is a small-amplitude sinusoid of amplitude a; and wave-number k is 

U a  I&?-) cos (kx), $=q%F) (4) 

where I is a modified Bessel function of the first kind. The centreline pressure 
derived from (4) is 

1 p(z,O) = cr-T 1-2ka- sin (kx) 
Il(kR) ’ 

where C, is an arbitrary constant. It is recognized that the actual flow investi- 
gated is far from irrotational, but (5) yields none the less an acceptable approxi- 

0.2 I I I I I I I 

Model I Flow 
0 _c 

-0.8 I I I I I 1 I I 

1 2 3 4 5 6 7 8. 9 
Section 

FIGURE 15. Comparison of measured centreline pressures with those 
computed from potential flow analysis. 

mation to the centreline pressure, as is demonstrated in figure 15, which was 
drawn matching the measured and calculated pressures at  section 5 and using 
the known values of U, a and L. The pressure at  other locations in a wavy pipe 
cannot be predicted from the potential flow model because of the pronounced 
effect of the velocity profile on the pressure distribution, which was discussed in 
the preceding section. 

Equations (2 ) ,  (3) and (5) may now be solved for n, with the result 

where C = 2(C,- C,)/p. By substituting the experimentally determined values 
of n a t  section 5, the following values of C were determined: model I, n = 19.2, 
C = 0-41V2; model 11, n = 14.2, C = 0.44U2. Using these values of C, the 
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exponents n were calculated for the other sections, with the results shown in 
figure 8. The agreement is seen to be as good as could reasonably have been 
expected in view of the several assumptions utilized. Incidentally, it is interesting 
to note from (6) that for a flow with n = 7 in a uniform pipe (a = 0) ,  C = 0*50U2. 
Hence it appears that C decreases with increasing wave steepness. 

In  the discussion of momentum considerations presented in the preceding 
section it was noted that the boundary shear stress makes a practically negligible 
contribution to the momentum balance and plays virtually no role in governing 
the velocity profiles except, of course, very close to the boundary. The shear stress 
must, however, still be strongly dependent on the velocity profile, as well aa on 
the boundary divergence and perhaps also on its higher derivatives. It was not 
found possible in the present study to do better than obtain an empirical expres- 
sion for the local Darcy-Weisbach friction factor, f, based on the local radius 
and mean velocity, 

where u, and Uo are the local boundary shear velocity and local mean velocity. 
The limiting case of this expression for boundary waves of infinite length or zero 
amplitude is that of a. straight pipe. Hence it is in order first to derive an expres- 
sion between the friction factor, f, and n for steady flow in a straight circular 
conduit. 

Integration of the logarithmic form of the velocity-defect law, 

across the pipe cross-section to obtain a second expression for Q yields 

Equating (3) and (9) leads to 
u7 3n+ 1 
- = U0(x)- 

3n2 ' K 

which, after introduction of (7), produces 

()"= K (i+&). 
Note that if the second term in parentheses is small compared to the first, (11) 
reduces to the relation obtained experimentally by Nunner (1956) 

f+= Iln 

for K = 0.353. The empirical expression obtained for the local friction for the 
case of wavy-pipe flow is 

1.06 
n 

32-2 
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where 6, is the momentum thickness and is given by 
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3r,n2 
6 -  

- 2 ( n  + 1) ( 2 n  + 1 )  (n + 2 )  

for the power-law velocity distribution. The negative and positive signs in (12)  
correspond to concave and convex boundaries, respectively. The constant 1.06 
corresponds for a uniform pipe to K = 0.375 in ( l l ) ,  the second term of which has 
been disregarded in its incorporation into (12) ;  note, however, that no assump- 

H 
v 

0.06 

1 
I 

0.02 I I I 1 I I r I I 
1 2 3 4 5 6 7 8 9 

Section 

FIGURE 16. Comparison of measured shear velocities and those obtained from (12) and ( 7 )  
using measured and predicted values of n. 0, from measured shear stress; +, from (12) 
and (7) ,  measured n ;  A, from (12) and (7) ,  predicted n. 

tion regarding K for wavy-pipe flows has been included in (12). It is seen that (12) 
separates the three factors affecting f: the primary flow is reflected in the modified 
Nnnner expression, l.O6/n, to which (12)  reduces for a = 0; the first term in 
brackets includes information on the local convergence or divergence of the 
boundary; and the final term introduces the effect of boundary curvature. 
Details of the logic used in arriving a t  (12)  are given by Hsu (1968). Figure 16 
presents comparisons of values of uJU0 from the experimental data and those 
obtained from (12)  using both values of n taken from the velocity profiles and 
computed from (6) using the aforementioned values of C. 

In  the interest of completing the reporting of results, table 3 summarizes 
several quantities related to the mean-velocity profiles. The tabulated values 
of n were obtained from figure 7 and a similar plot for model 11. The values of 
u,/Uo were calculated from the measured boundary shear stress and the mean 
velocity a t  each section. Semi-logarithmic p1ot.s of the velocity distributions 
yielded the first set of values of u,/U,K, while the second set was obtained from 
(10) using the values of n included in table 3; the good agreement between the 
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two sets of values supports the validity of (10) for the present flow. The values 
of K were computed from the reported values of u7/Uo and the values of U,IU~K 
obtained from the semi-logarithmic plots of velocity; K is seen to fluctuate 
periodically about the uniform-flow value of about 0-40. 

Section ... 1 2 3 4 5 6 7 8 9 

Model I 
n. 5.3 5.8 8.2 13.9 19.2 13.9 8.2 5.8 5.3 
u,lUo 0.040 0.048 0.055 0.056 0.053 0.046 0.040 0.036 0.041 
urlU0K 0.204 0.179 0.122 0.067 0.050 0.067 0.122 0.179 0.204 

%/UOK 0.200 0.182 0.127 0.074 0.053 0.074 0.127 0.182 0.200 

K 0.20 0.27 0.45 0.84 1.06 0.69 0.33 0.20 0.20 

(from semi-log plots) 

(from (10)) 

Model I1 
n 5.7 6.3 8.1 10.9 14.2 10.9 8.1 6.3 5.7 
% P O  0.040 0.045 0.049 0.051 0.050 0.046 0.041 0.038 0.041 
'%/uoK 0.186 0.167 0.126 0-092 0.071 0.092 0.126 0,167 0.186 

(from semi-log plots) 
U,IUoK 0-186 0.167 0.128 0.095 0.072 0.095 0.128 0.167 0.186 

(from (10)) 
K 0.21 0.27 0.39 0.55 0.70 0.50 0.33 0.23 0.22 

TABLE 3. Values of U~/U,K determined from semi-logarithmic plots and computed from (10) 
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